Доли

Урок 32 Бесплатно Доли. Обыкновенные дроби

Доли
Закрыть

Дроби в Древнем Египте на протяжении долгого времени носили название «ломаные числа».

Использовали Древние Египтяне простые дроби- единичные дроби, числитель которых всегда был равен единице, знаменателем же могло быть любое натуральное число.

При вычислениях все дроби представляли в виде суммы нескольких слагаемых вида \(\mathbf{\frac{1}{n}}\), где nнатуральное число.

Одним из древнейших упоминаний о Египетских дробях считается папирус Ринда.

Папирус включает в себя таблицу дробей и задачи с решениями и ответами.

Египтяне записывали дроби специальными иероглифами.

Они умели выполнять различные математические действия с дробями.

Вычислительные техники и математические навыки в Вавилоне были на более высоком уровне, чем в Древнем Египте.

В этом древнем государстве пользовались шестидесятеричной системой счисления.

В такой системе счисления каждый новый разряд отличался от предыдущего на 60.

Такая система счисления была удобна для измерения углов и времени.

Мы сохранили до сих пор особенности подсчета и определения времени и углов (деление часа и углового градуса на 60 минут, а минут на 60 секунд).

Шестидесятые доли были обычным делом в Вавилоне, соответственно и дроби использовались со знаменателем 60 или степени 60-ти.

Дроби записывались специальными знаками.

Дроби, записанные в шестидесятеричной системе счисления, позже стали использовать астрономы и математики других народов и государств.

Продолжительное время (примерно до XVII века) шестидесятеричные дроби называли астрономическими дробями.

В Древней Греции обыкновенные дроби и действия с ними использовали редко, а если и использовали, то специальной установленной формы записи дробей у них не существовало.

Пользовались они Египетской или Вавилонской формой представления дробей.

В целом Греки редко применяли дроби в своей математике, основывая свои умозаключения и вычисления в основном на понятии целого числа.

Однако, древнегреческий ученый и философ Пифагор и его последователи допускали существование дроби как отношение двух целых чисел, но единицу они считали неделимой.

Пифагор и его ученики умели производить математические операции над дробями, а также сравнивать дробные числа.

История возникновения дроби в Римской империи связана с мерой массы, которая носила название «асс».

Асс делился на 12 долей, каждая такая доля называлась «унция».

Из таких долей образовывались дроби со знаменателем 12.

Таким образом возникли Римские двенадцатеричные дроби, знаменатель которых всегда был равным 12.

У Римлян дробь \(\mathbf{\frac{1}{12}}\)- это одна унция.

Три унции- это четверть.

Четыре унции называли треть.

Шесть унций считали «половиной».

В других древних государствах так же существовало понятие о дробях и о возможных математических операциях с ними.

В математике Древнего Китая уже во втором веке до н.э. существовало понятие дробь числа, они умели сокращать дроби и выполнять различные арифметические операции с ними.

В научных трудах древнеиндийского математика Брахмагупты встречаются различные дроби как основные (числитель таких дробей является единицей), так и производные (числителем в таких дробях является любое число).

Дробь в его записях имеет двухэтажную форму (похожа на современную дробь): числитель расположен в верху, а знаменатель- под ним внизу, но горизонтальная черта- дробная черта в его записях отсутствует.

В России первое упоминание о дробях было в начале двенадцатого века в трудах русского средневекового новгородского мыслителя, математика, священнослужителя и летописца Кирика, он время делил на мелкие доли, выяснял сколько дробных часов содержится в одном дне.

До семнадцатого века на Руси дроби называли долями, в начале восемнадцатого века дроби стали называть «ломаными числами», дроби имели названия: полтина (половина), четь, треть, пятина, десятина и др.

Со временем менялась форма записи дробей, усложнялись математические операции, производимые с ними.

Впервые дробную черту, разделяющую числитель и знаменатель, стали применять в своих трудах арабы.

Первым европейским математиком, который применил дробную черту в своем научном труде (1202 год.), был итальянский путешественник, купец Леонардо Пизанский.

Дробная черта стала признанной лишь в шестнадцатом веке.

Термины «числитель» и «знаменатель» ввел греческий монах, ученый, математик Максим Плануд в тринадцатом веке

Источник: https://ladle.ru/education/matematika/5class/doli-obyknovennye-drobi

Доли, обыкновенные дроби: определения, обозначения, примеры, действия с дробями, числитель и знаменатель

Доли

Рассмотрение данной темы мы начнем с изучения понятия доли в целом, которое даст нам более полное понимание смысла обыкновенной дроби. Дадим основные термины и их определение, изучим тему в геометрическом толковании, т.е. на координатной прямой, а также определим список основных действий с дробями.

Доли целого

Представим некий предмет, состоящий из нескольких, совершенно равных частей. Например, это может быть апельсин, состоящий из нескольких одинаковых долек.

Определение 1

Доля целого или доля – это каждая из равных частей, составляющих целый предмет.

Очевидно, что доли могут быть разные. Чтобы наглядно пояснить это утверждение, представим два яблока, одно из которых разрезано на две равные части, а второе – на четыре. Ясно, что размеры получившихся долей у разных яблок будут различаться.

Доли имеют свои названия, которые зависят от количества долей, составляющих целый предмет. Если предмет имеет две доли, то каждая из них будет определяться как одна вторая доля этого предмета; когда предмет состоит из трех долей, то каждая из них – одна третья и так далее.

Определение 2

Половина – одна вторая доля предмета.

Треть – одна третья доля предмета.

Четверть – одна четвертая доля предмета.

Чтобы сократить запись, ввели следующие обозначения долей: половина – 12 или 1/2; треть – 13 или 1/3; одна четвертая доля – 14 или 1/4 и так далее. Записи с горизонтальной чертой используются чаще.

Понятие доли естественно расширяется с предметов на величины. Так, можно использовать для измерения небольших предметов доли метра (треть или одна сотая), как одной из единиц измерения длины. Аналогичным образом можно применить доли других величин.

Обыкновенные дроби, определение и примеры

Обыкновенные дробиприменяются для описания количества долей. Рассмотрим простой пример, который приблизит нас к определению обыкновенной дроби.

Представим апельсин, состоящий из 12 долек. Каждая доля тогда будет – одна двенадцатая или 1/12. Две доли – 2/12; три доли – 3/12 и т.д. Все 12 долей или целое число будет выглядеть так: 12/12. Каждая из используемых в примере записей является примером обыкновенной дроби.

Определение 3

Обыкновенная дробь – это запись вида mn или m/n, где m и n являются любыми натуральными числами.

Согласно данному определению, примерами обыкновенных дробей могут быть записи: 4/9, 1134, 91754. А такие записи: 115, 1,94,3 не являются обыкновенными дробями.

Числитель и знаменатель

Определение 4

Числителем обыкновенной дроби mn или m/n является натуральное число m.

Знаменателем обыкновенной дроби mn или m/n является натуральное число n.

Т.е. числитель – число, расположенное сверху над чертой обыкновенной дроби (или слева от наклонной черты), а знаменатель – число, расположенное под чертой (справа от наклонной черты).

Какой же смысл несут в себе числитель и знаменатель? Знаменатель обыкновенной дроби указывает на то, из скольких долей состоит один предмет, а числитель дает нам информацию о том, каково рассматриваемое количество таких долей. К примеру, обыкновенная дробь 754 указывает нам на то, что некий предмет состоит из 54 долей, и для рассмотрения мы взяли 7 таких долей.

Натуральное число как дробь со знаменателем 1

Знаменатель обыкновенной дроби может быть равен единице. В таком случае возможно говорить, что рассматриваемый предмет (величина) неделим, являет собой нечто целое. Числитель в подобной дроби укажет, какое количество таких предметов взято, т.е. обыкновенная дробь вида m1 имеет смысл натурального числа m. Это утверждение служит обоснованием равенства m1 = m.

Запишем последнее равенство так: m = m1.  Оно даст нам возможность любое натуральное число использовать в виде обыкновенной дроби. К примеру, число 74 – это обыкновенная дробь вида 741.

Определение 5

Любое натуральное число m возможно записать в виде обыкновенной дроби, где знаменатель – единица: m1.

В свою очередь, любая обыкновенная дробь вида m1 может быть представлена натуральным числом m.

Черта дроби как знак деления

 Использованное выше представление данного предмета как n долей является не чем иным, как делением на n равных частей. Когда предмет разделен на n частей, мы имеем возможность разделить его поровну между n людьми – каждый получит свою долю.

В случае, когда мы изначально имеем m одинаковых предметов (каждый разделен на n частей), то и эти m предметов возможно поровну разделить между n людьми, дав каждому из них по одной доле от каждого из m предметов. При этом у каждого человека будет m долей 1n, а m долей 1n даст обыкновенную дробь mn. Следовательно, обыкновенную дробь mn можно использовать, чтобы обозначать деление m предметов между n людьми.

Полученное утверждение устанавливает связь между обыкновенными дробями и делением. И эту связь можно выразить следующим образом: черту дроби возможно иметь в виду в качестве знака деления, т.е. m/n = m : n.

При помощи обыкновенной дроби мы можем записать итог деления двух натуральных чисел. К примеру, деление 7 яблок на 10 человек запишем как 710: каждому человеку достанется семь десятых долей.

Равные и неравные обыкновенные дроби

Логичным действием является сравнение обыкновенных дробей, ведь очевидно, что, к примеру, 18 яблока отлична от 78.

Результатом сравнения обыкновенных дробей может быть: равны или неравны.

Определение 6

Равные обыкновенные дроби – обыкновенные дроби ab  и cd, для которых справедливо равенство:  a · d = b · c.

Неравные обыкновенные дроби – обыкновенные дроби ab  и cd, для которых равенство:  a · d = b · c не является верным.

Пример равных дробей: 13 и 412 – поскольку выполняется равенство 1 ·12 = 3 · 4.

В случае, когда выясняется, что дроби не являются равными, обычно необходимо также узнать, какая из данных дробей меньше, а какая – больше. Чтобы дать ответ на эти вопросы, обыкновенные дроби сравнивают, приводя их к общему знаменателю и затем сравнив числители.

Дробные числа

Каждая дробь – это запись дробного числа, что по сути – просто «оболочка», визуализация смысловой нагрузки. Но все же для удобства мы объединяем понятия дроби и дробного числа, говоря просто – дробь.

Опиши задание

Дроби на координатном луче

Все дробные числа, как и любое другое число, имеют свое уникальное месторасположение на координатном луче: существует однозначное соответствие между дробями и точками координатного луча.

Чтобы на координатном луче найти точку, обозначающую дробь mn, необходимо от начала координат отложить в положительном направлении m отрезков, длина каждого из которых составит 1n долю единичного отрезка. Отрезки можно получить, разделив единичный отрезок на n одинаковых частей.

Как пример, обозначим на координатном луче точку М, которая соответствует дроби 1410.  Длина отрезка, концами которого является точка О и ближайшая точка, отмеченная маленьким штрихом, равна 110 доле единичного отрезка. Точка, соответствующая дроби 1410, расположена в удалении от начала координат на расстояние 14 таких отрезков.

Если дроби равны, т.е. им соответствует одно и то же дробное число, тогда эти дроби служат координатами одной и той же точки на координатном луче. К примеру, координатам в виде равных дробей 13, 26, 39, 515, 1133 соответствует одна и та же точка на координатном луче, располагающаяся на расстоянии трети единичного отрезка, отложенного от начала отсчета в положительном направлении.

Здесь работает тот же принцип, что и с целыми числами: на горизонтальном, направленном вправо координатном луче точка, которой соответствует большая дробь, разместится правее точки, которой соответствует меньшая дробь. И наоборот: точка, координата которой – меньшая дробь, будет располагаться левее точки, которой соответствует бОльшая координата.

Правильные и неправильные дроби, определения, примеры

В основе разделения дробей на правильные и неправильные лежит сравнение числителя и знаменателя в пределах одной дроби.

Определение 7

Правильная дробь – это обыкновенная дробь, в которой числитель меньше, чем знаменатель. Т.е., если выполняется неравенство m 

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/doli-obyknovennye-drobi/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.